调试中...
调试中...
题目描述
题目描述
题解
题解
提交记录
提交记录
代码
代码
测试用例
测试用例
测试结果
测试结果
中等
相关标签
相关企业
SQL Schema
Pandas Schema

表:Movies

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| movie_id      | int     |
| title         | varchar |
+---------------+---------+
movie_id 是这个表的主键(具有唯一值的列)。
title 是电影的名字。

表:Users

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user_id       | int     |
| name          | varchar |
+---------------+---------+
user_id 是表的主键(具有唯一值的列)。
'name' 列具有唯一值。

表:MovieRating

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| movie_id      | int     |
| user_id       | int     |
| rating        | int     |
| created_at    | date    |
+---------------+---------+
(movie_id, user_id) 是这个表的主键(具有唯一值的列的组合)。
这个表包含用户在其评论中对电影的评分 rating 。
created_at 是用户的点评日期。 

 

请你编写一个解决方案:

  • 查找评论电影数量最多的用户名。如果出现平局,返回字典序较小的用户名。
  • 查找在 February 2020 平均评分最高 的电影名称。如果出现平局,返回字典序较小的电影名称。

字典序 ,即按字母在字典中出现顺序对字符串排序,字典序较小则意味着排序靠前。

返回结果格式如下例所示。

 

示例 1:

输入:
Movies 表:
+-------------+--------------+
| movie_id    |  title       |
+-------------+--------------+
| 1           | Avengers     |
| 2           | Frozen 2     |
| 3           | Joker        |
+-------------+--------------+
Users 表:
+-------------+--------------+
| user_id     |  name        |
+-------------+--------------+
| 1           | Daniel       |
| 2           | Monica       |
| 3           | Maria        |
| 4           | James        |
+-------------+--------------+
MovieRating 表:
+-------------+--------------+--------------+-------------+
| movie_id    | user_id      | rating       | created_at  |
+-------------+--------------+--------------+-------------+
| 1           | 1            | 3            | 2020-01-12  |
| 1           | 2            | 4            | 2020-02-11  |
| 1           | 3            | 2            | 2020-02-12  |
| 1           | 4            | 1            | 2020-01-01  |
| 2           | 1            | 5            | 2020-02-17  | 
| 2           | 2            | 2            | 2020-02-01  | 
| 2           | 3            | 2            | 2020-03-01  |
| 3           | 1            | 3            | 2020-02-22  | 
| 3           | 2            | 4            | 2020-02-25  | 
+-------------+--------------+--------------+-------------+
输出:
Result 表:
+--------------+
| results      |
+--------------+
| Daniel       |
| Frozen 2     |
+--------------+
解释:
Daniel 和 Monica 都点评了 3 部电影("Avengers", "Frozen 2" 和 "Joker") 但是 Daniel 字典序比较小。
Frozen 2 和 Joker 在 2 月的评分都是 3.5,但是 Frozen 2 的字典序比较小。
通过次数
39.1K
提交次数
104.3K
通过率
37.5%

相关标签

相关企业

评论 (0)

贡献者
© 2025 领扣网络(上海)有限公司
0 人在线
行 1,列 1
Movies =
| movie_id | title | | -------- | -------- | | 1 | Avengers | | 2 | Frozen 2 | | 3 | Joker |
Users =
| user_id | name | | ------- | ------ | | 1 | Daniel | | 2 | Monica | | 3 | Maria | | 4 | James |
MovieRating =
| movie_id | user_id | rating | created_at | | -------- | ------- | ------ | ---------- | | 1 | 1 | 3 | 2020-01-12 | | 1 | 2 | 4 | 2020-02-11 | | 1 | 3 | 2 | 2020-02-12 | | 1 | 4 | 1 | 2020-01-01 | | 2 | 1 | 5 | 2020-02-17 | | 2 | 2 | 2 | 2020-02-01 | | 2 | 3 | 2 | 2020-03-01 | | 3 | 1 | 3 | 2020-02-22 | | 3 | 2 | 4 | 2020-02-25 |