调试中...
调试中...
题目描述
题目描述
题解
题解
提交记录
提交记录
代码
代码
测试用例
测试用例
测试结果
测试结果
中等
相关标签
相关企业
提示

我们正在玩一个猜数游戏,游戏规则如下:

  1. 我从 1 n 之间选择一个数字。
  2. 你来猜我选了哪个数字。
  3. 如果你猜到正确的数字,就会 赢得游戏
  4. 如果你猜错了,那么我会告诉你,我选的数字比你的 更大或者更小 ,并且你需要继续猜数。
  5. 每当你猜了数字 x 并且猜错了的时候,你需要支付金额为 x 的现金。如果你花光了钱,就会 输掉游戏

给你一个特定的数字 n ,返回能够 确保你获胜 的最小现金数,不管我选择那个数字

 

示例 1:

输入:n = 10
输出:16
解释:制胜策略如下:
- 数字范围是 [1,10] 。你先猜测数字为 7 。
    - 如果这是我选中的数字,你的总费用为 $0 。否则,你需要支付 $7 。
    - 如果我的数字更大,则下一步需要猜测的数字范围是 [8,10] 。你可以猜测数字为 9 。
        - 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $9 。
        - 如果我的数字更大,那么这个数字一定是 10 。你猜测数字为 10 并赢得游戏,总费用为 $7 + $9 = $16 。
        - 如果我的数字更小,那么这个数字一定是 8 。你猜测数字为 8 并赢得游戏,总费用为 $7 + $9 = $16 。
    - 如果我的数字更小,则下一步需要猜测的数字范围是 [1,6] 。你可以猜测数字为 3 。
        - 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $3 。
        - 如果我的数字更大,则下一步需要猜测的数字范围是 [4,6] 。你可以猜测数字为 5 。
            - 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $5 。
            - 如果我的数字更大,那么这个数字一定是 6 。你猜测数字为 6 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。
            - 如果我的数字更小,那么这个数字一定是 4 。你猜测数字为 4 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。
        - 如果我的数字更小,则下一步需要猜测的数字范围是 [1,2] 。你可以猜测数字为 1 。
            - 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $1 。
            - 如果我的数字更大,那么这个数字一定是 2 。你猜测数字为 2 并赢得游戏,总费用为 $7 + $3 + $1 = $11 。
在最糟糕的情况下,你需要支付 $16 。因此,你只需要 $16 就可以确保自己赢得游戏。

示例 2:

输入:n = 1
输出:0
解释:只有一个可能的数字,所以你可以直接猜 1 并赢得游戏,无需支付任何费用。

示例 3:

输入:n = 2
输出:1
解释:有两个可能的数字 1 和 2 。
- 你可以先猜 1 。
    - 如果这是我选中的数字,你的总费用为 $0 。否则,你需要支付 $1 。
    - 如果我的数字更大,那么这个数字一定是 2 。你猜测数字为 2 并赢得游戏,总费用为 $1 。
最糟糕的情况下,你需要支付 $1 。

 

提示:

  • 1 <= n <= 200
通过次数
55.8K
提交次数
87.6K
通过率
63.7%


相关企业

提示 1
The best strategy to play the game is to minimize the maximum loss you could possibly face. Another strategy is to minimize the expected loss. Here, we are interested in the first scenario.

提示 2
Take a small example (n = 3). What do you end up paying in the worst case?

提示 3
Check out this article if you're still stuck.

提示 4
The purely recursive implementation of minimax would be worthless for even a small n. You MUST use dynamic programming.

提示 5
As a follow-up, how would you modify your code to solve the problem of minimizing the expected loss, instead of the worst-case loss?


评论 (0)

贡献者
© 2025 领扣网络(上海)有限公司
0 人在线
行 1,列 1
n =
10
Source